Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.531
Filtrar
1.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563086

RESUMO

The objective of this work was to evaluate the combination of synthetic peptides based on the γ-core motif of defensin PvD1 with amphotericin B (AmB) at different concentrations against Candida albicans. We applied the checkerboard assay using different concentrations of the commercial drug AmB and the synthetic peptides γ31-45PvD1++ and γ33-41PvD1++ against C. albicans, aiming to find combinations with synergistic interactions. Between these two interactions involving γ31-45PvD1++ and AmB, an additive effect was observed. One such interaction occurred at concentrations of 0.009 µM of peptide γ31-45PvD1++ and 13.23 µM of AmB and another condition of 0.019 µM of peptide γ31-45PvD1++ and 6.61 µM of AmB. The other two concentrations of the interaction showed a synergistic effect in the combination of synthetic peptide γ31-45PvD1++ and AmB, where the concentrations were 1.40 µM peptide γ31-45PvD1++ and 0.004 µM AmB and 0.70 µM γ31-45PvD1++ peptide and 0.002 µM AmB. We proceeded with analysis of the mechanism of action involving synergistic effects. This examination unveiled a range of impactful outcomes, including the impairment of mitochondrial functionality, compromise of cell wall integrity, DNA degradation, and a consequential decline in cell viability. We also observed that both synergistic combinations were capable of causing damage to the plasma membrane and cell wall, causing leakage of intracellular components. This discovery demonstrates for the first time that the synergistic combinations found between the synthetic peptide γ31-45PvD1++ and AmB have an antifungal effect against C. albicans, acting on the integrity of the plasma membrane and cell wall.


Assuntos
Anfotericina B , Candida albicans , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Peptídeos/farmacologia , Membrana Celular , Parede Celular , Testes de Sensibilidade Microbiana
2.
J Agric Food Chem ; 72(15): 8521-8535, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565849

RESUMO

Thirty-five norsesquiterpenoids were isolated from the fermentation broth of Streptomyces microflavus from the forest soil of Ailaoshan in China. The structures of new compounds (1-5, 10-26) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra, as well as Mosher's reagent derivatives method. Norsesquiterpenoids showed different levels of antifungal activity with MIC80 values ranging from 25 to 200 µg/mL against Candida albicans, Candida parapsilosis, and Cryptococcus neoformans. The combining isolated norsesquiterpenoids with amphotericin B resulted in a synergistic interaction against test yeast-like fungi with a fractional inhibitory concentration index < 0.5. Compound 33 significantly inhibited biofilm formation and destroyed the preformed biofilm of fungi. Moreover, 33 downregulated the expression of adhesion-related genes HWP1, ALS1, ALS3, ECE1, EAP1, and BCR1 to inhibit the adhesion of C. albicans. Findings from the current study highlight the potential usage of norsesquiterpenoids from soil-derived Streptomyces for antifungal leads discovery.


Assuntos
Antifúngicos , Streptomyces , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Candida albicans , Streptomyces/genética , Biofilmes , Testes de Sensibilidade Microbiana
3.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637433

RESUMO

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candida auris , Candida , Anfotericina B/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
4.
Mycoses ; 67(4): e13724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584320

RESUMO

OBJECTIVE: This study aims to assess the clinical characteristics of sporotrichosis in low-endemic areas of China, including the prevalence geography, genotypic traits of patients, clinical manifestations, and strain virulence and drug sensitivities. The objective is to improve the currently used clinical management strategies for sporotrichosis. METHODS: Retrospective data were collected from patients diagnosed with sporotrichosis through fungal culture identification. The isolates from purified cultures underwent identification using CAL (Calmodulin) gene sequencing. Virulence of each strain was assessed using a Galleria mellonella (G. mellonella) larvae infection model. In vitro susceptibility testing against commonly used clinical antifungal agents for sporotrichosis was conducted following CLSI criteria. RESULTS: In our low-endemic region for sporotrichosis, the majority of cases (23) were observed in middle-aged and elderly women with a history of trauma, with a higher incidence during winter and spring. All clinical isolates were identified as Sporothrix globosa (S. globosa). The G. mellonella larvae infection model indicated independent and dose-dependent virulence among strains, with varying toxicity levels demonstrated by the degree of melanization of the G. mellonella. Surprisingly, lymphocutaneous types caused by S. globosa exhibited lower in vitro virulence but were more common in affected skin. In addition, all S.globosa strains displayed high resistances to fluconazole, while remaining highly susceptible to terbinafine, itraconazole and amphotericin B. CONCLUSION: Given the predominance of elderly women engaged in agricultural labour in our region, which is a low-epidemic areas, they should be considered as crucial targets for sporotrichosis monitoring. S. globosa appears to be the sole causative agent locally. However, varying degrees of melanization in larvae were observed among these isolates, indicating a divergence in their virulence. Itraconazole, terbinafine and amphotericin B remain viable first-line antifungal options for treating S.globosa infection.


Assuntos
Sporothrix , Esporotricose , Idoso , Pessoa de Meia-Idade , Humanos , Feminino , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Esporotricose/microbiologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Terbinafina/uso terapêutico , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Sporothrix/genética , China/epidemiologia
5.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543033

RESUMO

Glycosylated polyene macrolides are important antifungal agents that are produced by many actinomycete species. Development of new polyenes may deliver improved antibiotics. Here, Streptomyces nodosus was genetically re-programmed to synthesise pentaene analogues of the heptaene amphotericin B. These pentaenes are of interest as surrogate substrates for enzymes catalysing unusual, late-stage biosynthetic modifications. The previous deletion of amphotericin polyketide synthase modules 5 and 6 generated S. nodosus M57, which produces an inactive pentaene. Here, the chain-terminating thioesterase was fused to module 16 to generate strain M57-16TE, in which cycles 5, 6, 17 and 18 are eliminated from the biosynthetic pathway. Another variant of M57 was obtained by replacing modules 15, 16 and 17 with a single 15-17 hybrid module. This gave strain M57-1517, in which cycles 5, 6, 15 and 16 are deleted. M57-16TE and M57-1517 gave reduced pentaene yields. Only M57-1517 delivered its predicted full-length pentaene macrolactone in low amounts. For both mutants, the major pentaenes were intermediates released from modules 10, 11 and 12. Longer pentaene chains were unstable. The novel pentaenes were not glycosylated and were not active against Candida albicans. However, random mutagenesis and screening may yet deliver new antifungal producers from the M57-16TE and M57-1517 strains.


Assuntos
Anfotericina B , Policetídeo Sintases , Anfotericina B/farmacologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Polienos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Macrolídeos/metabolismo , Antibacterianos
6.
APMIS ; 132(5): 291-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38465406

RESUMO

Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.


Assuntos
Anfotericina B , Micoses , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Farmacorresistência Fúngica , Ergosterol/uso terapêutico
7.
Mycoses ; 67(4): e13723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38551121

RESUMO

BACKGROUND: The emergence of the pathogenic yeast Candida auris is of global concern due to its ability to cause hospital outbreaks and develop resistance against all antifungal drug classes. Based on published data for baker's yeast Saccharomyces cerevisiae, sphingolipid biosynthesis, which is essential for maintaining membrane fluidity and formation of lipid rafts, could offer a target for additive treatment. METHODS: We analysed the susceptibility of C. auris to myriocin, which is an inhibitor of the de novo synthesis of sphingolipids in eukaryotic cells in comparison to other Candida species. In addition, we combined sublethal concentrations of myriocin with the antifungal drugs amphotericin B and fluconazole in E-tests. Consequently, the combinatory effects of myriocin and amphotericin B were examined in broth microdilution assays. RESULTS: Myriocin-mediated inhibition of the sphingolipid biosynthesis affected the growth of C. auris. Sublethal myriocin concentrations increased fungal susceptibility to amphotericin B. Isolates which are phenotypically resistant (≥2 mg/L) to amphotericin B became susceptible in presence of myriocin. However, addition of myriocin had only limited effects onto the susceptibility of C. auris against fluconazole. CONCLUSIONS: Our results show that inhibition of de novo sphingolipid biosynthesis increases the susceptibility of C. auris to amphotericin B. This may potentially enhance antifungal treatment options fighting this often resistant yeast pathogen.


Assuntos
Anfotericina B , Antifúngicos , Ácidos Graxos Monoinsaturados , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Fluconazol/farmacologia , Candida auris , Candida , Saccharomyces cerevisiae , Testes de Sensibilidade Microbiana , Esfingolipídeos/farmacologia
8.
J Infect Dev Ctries ; 18(2): 303-308, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38484360

RESUMO

INTRODUCTION: Invasive Candida infections have recently shown a significant increase in prevalence and are associated with high mortality rates. Initiating early antifungal treatment in patients with candidemia is vital. The aim of our study was to compare the antifungal susceptibility results of a new method called Flat Plate Method modified from reference "Clinical and Laboratory Standards Institute (CLSI) microdilution method by us with Sensitititre Yeast One colorimetric method and the reference CLSI method. METHODOLOGY: We tested 100 Candida isolates from blood cultures. We followed the CLSI M27-A3 (reference method for broth dilution antifungal susceptibility testing of yeasts; third edition) guidelines for testing in vitro susceptibility to amphotericin B. In the Flat Plate method, 96-well plates were used for evaluation with an inverted microscope. Minimum inhibitory concentration (MIC) values in the SYO method were measured following the manufacturer's instructions. The MIC values obtained by all three methods were considered compatible if they were within ± 2 dilution limits. RESULTS: The SYO method detected C. albicans and C. glabrata with 100% essential agreement, whereas there was 96.29% essential agreement in the case of C. parapsilosis. In the Flat Plate method, the essential agreement with amphotericin B was 91.42%, for C. albicans isolates and 89.47%.for C. glabrata strains. CONCLUSIONS: When determining early antifungal susceptibility using the Flat Plate method, the results are obtained quickly, with high accuracy, and without incurring additional costs. However, there is a need for comprehensive studies comparing different antifungals.


Assuntos
Candidemia , Candidíase Invasiva , Humanos , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Candida , Candidemia/epidemiologia , Testes de Sensibilidade Microbiana , Candida albicans , Fluconazol/farmacologia
9.
Emerg Microbes Infect ; 13(1): 2322649, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38431850

RESUMO

Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.


Assuntos
Anfotericina B , Antifúngicos , Candidíase , Animais , Camundongos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida auris , Lansoprazol/farmacologia , Respiração , Citocromos
10.
Biochemistry ; 63(8): 953-957, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38545902

RESUMO

A major challenge currently facing medicinal chemists is designing agents that can selectively destroy drug resistant fungi and bacteria that have begun to emerge. One factor that has been overlooked by virtually all drug discovery/development approaches is the supramolecular factor, in which aggregated forms of a drug candidate exhibit low selectivity in destroying targeted cells while the corresponding monomers exhibit high selectivity. This Perspective discusses how we were led to the supramolecular factor through fundamental studies with simple model systems, how we reasoned that the selectivity of monomers of the antifungal agent amphotericin B should be much greater than the selectivity of the corresponding aggregates, and how we confirmed this hypothesis using derivatives of amphotericin B. In a broader context, these findings provide a strong rationale for considering the supramolecular factor in the design of new drug candidates and the testing of virtually all of them.


Assuntos
Anfotericina B , Antifúngicos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Fungos , Desenho de Fármacos , Descoberta de Drogas
11.
J Clin Microbiol ; 62(4): e0152823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501836

RESUMO

Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.


Assuntos
Anfotericina B , Fluconazol , Humanos , Fluconazol/farmacologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida auris , Micafungina , Caspofungina , Testes de Sensibilidade Microbiana , Equinocandinas/farmacologia
13.
Biochim Biophys Acta Gen Subj ; 1868(5): 130583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360076

RESUMO

Antimicrobial peptides (AMP) represent an alternative in the treatment of fungal infections associated with countless deaths. Here, we report a new AMP, named KWI-19, which was designed based on a peptide encrypted in the sequence of an Inga laurina Kunitz-type inhibitor (ILTI). KWI-19 inhibited the growth of Candida species and acted as a fungicidal agent from 2.5 to 20 µmol L-1, also showing synergistic activity with amphotericin B. Kinetic assays showed that KWI-19 killed Candida tropicalis cells within 60 min. We also report the membrane-associated mechanisms of action of KWI-19 and its interaction with ergosterol. KWI-19 was also characterized as a potent antibiofilm peptide, with activity against C. tropicalis. Finally, non-toxicity was reported against Galleria mellonella larvae, thus strengthening the interest in all the bioactivities mentioned above. This study extends our knowledge on how AMPs can be engineered from peptides encrypted in larger proteins and their potential as candicidal agents.


Assuntos
Antifúngicos , Candida , Animais , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Peptídeos/farmacologia , Candida tropicalis , Inibidores de Proteases , Peptídeo Hidrolases
14.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225460

RESUMO

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Encéfalo , Ergosterol/uso terapêutico
15.
J Mycol Med ; 34(1): 101462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290229

RESUMO

Keratoplasty represents a risk factor for fungal eye infections, despites the antibacterial actives in the corneal tissue preservation means, it does not contain active substances with antifungal action. Among the most commonly associated fungal agents are the species belonging to the genera Fusarium and Candida. These agents can trigger an infectious process characterized by swift progression associated with high rates of morbidity, causing irreversible damage. Polyene and azole antifungals are the main agents of ocular therapy, however, they demonstrate some limitations, such as their toxicity and fungal resistance. In this context, drug repositioning and the combination of antifungals may be an alternative. Hence, the goal of this study was to investigate the potential activity of clioquinol (CLQ), a derivative of 8-hydroxyquinoline with previously described antifungal activity, along with its triple and quadruple combinations with antifungal agents commonly used in ophthalmic fungal therapy, natamycin (NAT), voriconazole (VRC), and amphotericin B (AMB), against main fungal pathogens in eye infections. The MICs for CLQ ranged from 0.25 to 2.0 µg/mL, for NAT from 4.0 to 32.0 µg/mL, for AMB it ranged from 0.25 to 16.0 µg/mL and for VRC from 0.03125 to 512.0 µg/mL. Among the tested combinations, the VRC-AMB-CLQ combination stands out, which showed a synergistic effect for more than 50 % of the tested strains and did not present antagonistic results against any of them. Toxicity data were similar to those antifungals already used, even with lower potential toxicity. Therefore, both clioquinol and the triple combination VCR-AMB-CLQ exhibited promising profiles for use as active components in corneal tissue preservation medium.


Assuntos
Clioquinol , Infecções Oculares Fúngicas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Voriconazol/farmacologia , Voriconazol/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Clioquinol/farmacologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Candida , Testes de Sensibilidade Microbiana
16.
Mycopathologia ; 189(1): 4, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231458

RESUMO

BACKGROUND: Recently, the prevalence of invasive fungal infections has been on the rise, and one of the prevalent symptoms frequently observed is bone deterioration and bone loss. MATERIALS AND METHODS: Using an in vitro model we studied how Aspergillus fumigatus invades the bone. Pathological analysis was then employed to observe the structure and distinctive features of the invading fungal elements within the bone invasion model. Meanwhile, the antifungal effects of itraconazole, voriconazole, posaconazole, and amphotericin B were evaluated. RESULTS: The pathological findings showed that in the experimental group, fungal spores and hyphae invaded the bone tissue or were observed growing in the vicinity of the bone edge tissues, as indicated by both HE and PAS staining. In contrast, no fungal elements were observed in the control group, indicating that the in vitro bone invasion model of A. fumigatus was successfully constructed. Furthermore, the findings from the antifungal sensitivity test demonstrated that the lowest effective concentrations of antifungal drugs against the bone invasion model were as follows: 4 µg/ml for itraconazole, 0.5 µg/ml for voriconazole, 2 µg/ml for posaconazole, and 2 µg/ml for amphotericin B. DISCUSSION: The successful construction of the bone invasion model of A. fumigatus has provided a solid basis for future investigations into the mechanisms underlying A. fumigatus bone invasion and the study of its virulence factors. Utilizing bone models is of utmost importance in advancing the development of novel antifungal treatment approaches, as well as in effectively preventing and treating fungal bone invasion and osteolytic diseases.


Assuntos
Antifúngicos , Itraconazol , Antifúngicos/farmacologia , Itraconazol/farmacologia , Voriconazol/farmacologia , Anfotericina B/farmacologia , Aspergillus fumigatus , Osso e Ossos
17.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215741

RESUMO

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Assuntos
Criptococose , Cryptococcus neoformans , Fungicidas Industriais , Pneumonia , Animais , Camundongos , Anfotericina B/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Fungicidas Industriais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia
18.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38204138

RESUMO

Infections caused by Cryptococcus gattii mainly affect immunocompetent individuals and the treatment presents important limitations. This study aimed to validate the efficacy of selective serotonin reuptake inhibitors (SSRI), fluoxetine hydrochloride (FLH), and paroxetine hydrochloride (PAH) in vitro against C. gattii. The antifungal activity of SSRI using the microdilution method revealed a minimal inhibitory concentration (MIC) of 31.25 µg/ml. The combination of FLH or PAH with amphotericin B (AmB) was analyzed using the checkerboard assay and the synergistic effect of SSRI in combination with AmB was able to reduce the SSRI or AmB MIC values 4-8-fold. When examining the effect of SSRI on the induced capsules, we observed that FLH and PAH significantly decreased the size of C. gattii capsules. In addition, the effects of FLH and PAH were evaluated in biofilm biomass and viability. The SSRI were able to reduce biofilm biomass and biofilm viability. In conclusion, our results indicate the use of FLH and PAH exhibited in vitro anticryptococcal activity, representing a possible future alternative for the cryptococcosis treatment.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Humanos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Testes de Sensibilidade Microbiana , Fluoxetina/farmacologia , Paroxetina/farmacologia , Biofilmes
19.
Int J Biol Macromol ; 260(Pt 2): 129471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237837

RESUMO

Amphotericin B (AmB) is a widely used antifungal agent; however, its clinical application is limited due to severe side effects and nephrotoxicity associated with parenteral administration. In recent years, there has been growing interest in the utilization of food-grade materials as innovative components for nanotechnology-based drug delivery systems. This study introduces gliadin/casein nanoparticles encapsulating AmB (AmB_GliCas NPs), synthesized via antisolvent precipitation. Formulation was refined using a 24 factorial design, assessing the influence of gliadin and casein concentrations, as well as organic and aqueous phase volumes, on particle size, polydispersity index (PDI), and zeta potential. The optimal composition with 2 % gliadin, 0.5 % casein, and a 1:5 organic-to-aqueous phase ratio, yielded nanoparticles with a 442 nm size, a 0.307 PDI, a -20 mV zeta potential, and 82 % entrapment efficiency. AmB was confirmed to be amorphous within the nanoparticles by X-ray diffraction. These NPs released AmB sustainably over 96 h, primarily in its monomeric form. Moreover, NPs maintained stability in simulated gastrointestinal fluids with minimal drug release and showed significantly lower hemolytic activity and cytotoxicity on Vero cells than free AmB, suggesting their promise for oral AmB delivery.


Assuntos
Anfotericina B , Nanopartículas , Animais , Chlorocebus aethiops , Anfotericina B/farmacologia , Gliadina , Caseínas , Células Vero , Antifúngicos , Portadores de Fármacos
20.
Arch Biochem Biophys ; 753: 109884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218361

RESUMO

The spread of fungi resistant to conventional drugs has become a threatening problem. In this context, antimicrobial peptides (AMPs) have been considered as one of the main alternatives for controlling fungal infections. Here, we report the antifungal and antibiofilm activity and some clues about peptide RQ18's mechanism of action against Candida and Cryptococcus. This peptide inhibited yeast growth from 2.5 µM and killed all Candida tropicalis cells within 2 h incubation. Moreover, it showed a synergistic effect with antifungal agent the amphotericin b. RQ18 reduced biofilm formation and promoted C. tropicalis mature biofilms eradication. RQ18's mechanism of action involves fungal cell membrane damage, which was confirmed by the results of RQ18 in the presence of free ergosterol in the medium and fluorescence microscopy by Sytox green. No toxic effects were observed in murine macrophage cell lines and Galleria mellonella larvae, suggesting fungal target selectivity. Therefore, peptide RQ18 represents a promising strategy as a dual antifungal and antibiofilm agent that contributes to infection control without damaging mammalian cells.


Assuntos
Anfotericina B , Antifúngicos , Animais , Camundongos , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Peptídeos/farmacologia , Candida tropicalis , Biofilmes , Testes de Sensibilidade Microbiana , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...